80 research outputs found

    A transition of atmospheric emissions of particles and gases from on-road heavy-duty trucks

    Get PDF
    The transition, in extent and characteristics, of atmospheric emissions caused by the modernization of the heavy-duty on-road fleet was studied utilizing roadside measurements. Emissions of particle number (PN), particle mass (PM), black carbon (BC), nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbon (HC), particle size distributions, and particle volatility were measured from 556 individual heavy-duty trucks (HDTs). Substantial reductions in PM, BC, NOx, CO, and to a lesser extent PN were observed from Euro III to Euro VI HDTs by 99 %, 98 %, 93 %, and 57 % for the average emission factors of PM, BC, NOx, and CO, respectively. Despite significant total reductions in NOx emissions, the fraction of NO2 in the NOx emissions increased continuously from Euro IV to Euro VI HDTs. Larger data scattering was evident for PN emissions in comparison to solid particle number (SPN) for Euro VI HDTs, indicating a highly variable fraction of volatile particle components. Particle size distributions of Euro III to enhanced environmentally friendly vehicle (EEV) HDTs were bimodal, whereas those of Euro VI HDTs were nucleation mode dominated. High emitters disproportionately contributed to a large fraction of the total emissions with the highest-emitting 10 % of HDTs in each pollutant category being responsible for 65 % of total PM, 70 % of total PN, and 44 % of total NOx emissions. Euro VI HDTs, which accounted for 53 % of total kilometres driven by Swedish HDTs, were estimated to only contribute to 2 %, 6 %, 12 %, and 47 % of PM, BC, NOx, and PN emissions, respectively. A shift to a fleet dominated by Euro VI HDTs would promote a transition of atmospheric emissions towards low PM, BC, NOx, and CO levels. Nonetheless, reducing PN, SPN, and NO2 emissions from Euro VI HDTs is still important to improve air quality in urban environments

    Molecular identification of organic vapors driving atmospheric nanoparticle growth

    Get PDF
    Particles formed in the atmosphere via nucleation provide about half the number of atmospheric cloud condensation nuclei, but in many locations, this process is limited by the growth of the newly formed particles. That growth is often via condensation of organic vapors. Identification of these vapors and their sources is thus fundamental for simulating changes to aerosol-cloud interactions, which are one of the most uncertain aspects of anthropogenic climate forcing. Here we present direct molecular-level observations of a distribution of organic vapors in a forested environment that can explain simultaneously observed atmospheric nanoparticle growth from 3 to 50 nm. Furthermore, the volatility distribution of these vapors is sufficient to explain nanoparticle growth without invoking particle-phase processes. The agreement between observed mass growth, and the growth predicted from the observed mass of condensing vapors in a forested environment thus represents an important step forward in the characterization of atmospheric particle growth.Peer reviewe

    Atmospheric Chemistry of tert-butylamine and AMP

    Get PDF
    The atmospheric chemistry of (CH3)3CNH2 (tert-butylamine, tBA) and (CH3)2(CH2OH)CNH2 (2-amino-2-methyl-1-propanol, AMP) has been studied by quantum chemistry methods and in photo-oxidation experiments in the EUPHORE chamber in Valencia (Spain). Aerosol formation and composition has been quantified. Yields of nitramines and other products in the photo-oxidations have been determined and complete photo-oxidation schemes including branching between the major reaction routes have been obtained. Published by Elsevier Ltd
    corecore